Hybridization chain reaction engineered DNA nanopolylinker for amplified electrochemical sensing of biomarkers.
نویسندگان
چکیده
A DNA nanopolylinker was designed as a three dimensional nanoprobe with high loading of signal molecules for amplifying the biosensing signal. The nanoprobe was prepared by hybridization chain reaction engineering dsDNA polymerization on initiator DNA modified Au nanoparticle with two kinds of small molecule, for example, FITC-labeled DNA hairpins. The core-shell conjugate that was formed contained approximately 320 FITC molecules for further binding of signal molecules. With a sandwich-type immunoreaction and a biotin-streptavidin affinity reaction, the biotinylated core-shell nanoprobe was immobilized on the immunosensor surface, and the FITC molecules then bound enzyme labeled anti-FITC antibody to catalyze a silver deposition process, leading to a novel cascade signal amplification strategy. By combining the proposed strategy with stripping analysis of the deposited silver, an ultrasensitive immunoassay method for biomarker detection was developed. Under optimal conditions, this method showed a linear detection range over 5 orders of magnitude for carcinoembryonic antigen with a detection limit of 1.2 fg mL(-1) (about 18 molecules in 5.0 μL sample). The preparation of DNA nanopolylinker was simple and economic, and it could be used as a universal and multifarious probe for different bioanalytical techniques and showed the promising potential of the signal amplification strategy in the future design of biosensing methodology.
منابع مشابه
Ultrasensitive enzyme-free electrochemical immunosensor based on hybridization chain reaction triggered double strand DNA@Au nanoparticle tag.
An ultrasensitive enzyme-free electrochemical immunoassay was developed for detection of the fg/mL level carcinoembryonic antigen (CEA) by using a double strand DNA@Au nanoparticle (dsDNA@AuNP) tag and hexaammineruthenium(III) chloride (RuHex) as the electroactive indicator. The dsDNA@AuNP was synthesized by one-pot hybrid polymerization of dsDNA on initiator DNA modified AuNPs via hybridizatio...
متن کاملHybridization chain reaction engineered dsDNA for Cu metallization: an enzyme-free platform for amplified detection of cancer cells and microRNAs.
A novel enzyme-free platform for amplified detection of cancer cells and miRNAs was constructed with high sensitivity by fluorescent Cu metallization on HCR engineered dsDNA templates.
متن کاملIn situ DNA amplification with magnetic primers for the electrochemical detection of food pathogens.
A sensitive and selective genomagnetic assay for the electrochemical detection of food pathogens based on in situ DNA amplification with magnetic primers has been designed. The performance of the genomagnetic assay was firstly demonstrated for a DNA synthetic target by its double-hybridization with both a digoxigenin probe and a biotinylated capture probe, and further binding to streptavidin-mo...
متن کاملAmplified detection of nucleic acid by G-quadruplex based hybridization chain reaction.
A protein-free, isothermal, self-amplified nucleic acid sensing system which was a G-quadruplex integrated hybridization chain reaction (GQ-HCR) system was developed. The G-quadruplex was closed two-thirds in the loop and one-third in the stem of one of the GQ-HCR hairpin probes. In the absence of the target molecule, the GQ-HCR probes stayed as inactive meta-stable hairpin structures and the G...
متن کاملDevelopment of an Alu-PCR Amplified YAC Probe Suitable for Enumeration of Chromosome 13 on Uncultured Lymphocytes and Amniocytes by Fluorescence in situ Hybridization
The main objective of the present study was to develop an efficient and reliable probe to be routinely used for detection of chromosome 13 copy numbers by interphase FISH. To achieve this, a Yeast Artificial Chromosome (YAC) containing sequences specific for human 13q12 (744D11), was cultured and the whole yeast genomic DNA was extracted. The human insert within the isolated DNA was amplified b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Analyst
دوره 138 17 شماره
صفحات -
تاریخ انتشار 2013